MATH 1A - MOCK FINAL DELUXE - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points, 5 points each) Find the following limits
(a)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x & =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+x}-x\right)\left(\sqrt{x^{2}+x}+x\right)}{\sqrt{x^{2}+x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+x-x^{2}}{\sqrt{x^{2}+x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}} \sqrt{1+\frac{1}{x}}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x}{x \sqrt{1+\frac{1}{x}}+x} \quad \text { since } \sqrt{x^{2}}=|x|=x, \text { since } x>0 \\
& =\lim _{x \rightarrow \infty} \frac{x}{x\left(\sqrt{1+\frac{1}{x}}+1\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1} \\
& =\frac{1}{1+1} \\
& =\frac{1}{2}
\end{aligned}
$$

(b)

$$
\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{2 \ln (x) \frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{2 \ln (x)}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1}=\frac{2}{\infty}=0
$$

2. (10 points) Use the definition of the derivative to calculate $f^{\prime}(x)$, where:

$$
f(x)=\frac{1}{x}
$$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{1}{x}-\frac{1}{a}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{a}{a x}-\frac{x}{a x}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{a-x}{a x}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{a-x}{a x(x-a)} \\
& =\lim _{x \rightarrow a} \frac{-(x-a)}{a x(x-a)} \\
& =\lim _{x \rightarrow a} \frac{-1}{a x} \\
& =-\frac{1}{a^{2}}
\end{aligned}
$$

Hence $f^{\prime}(x)=-\frac{1}{x^{2}}$
3. (10 points, 5 points each) Find the derivatives of the following functions
(a) $f(x)=x^{\cos (x)}$
$\underline{\text { Logarithmic differentiation }}$

1) Let $y=x^{\cos (x)}$
2) Then $\ln (y)=\cos (x) \ln (x)$
3) $\frac{y^{\prime}}{y}=-\sin (x) \ln (x)+\frac{\cos (x)}{x}$
4)

$y^{\prime}=y\left(-\sin (x) \ln (x)+\frac{\cos (x)}{x}\right)=x^{\cos (x)}\left(-\sin (x) \ln (x)+\frac{\cos (x)}{x}\right)$
(b) y^{\prime}, where $x^{3}+y^{3}=x y$

$$
\begin{aligned}
3 x^{2}+3 y^{2} y^{\prime} & =y+x y^{\prime} \\
3 y^{2} y^{\prime}-x y^{\prime} & =y-3 x^{2} \\
\left(3 y^{2}-x\right) y^{\prime} & =y-3 x^{2} \\
y^{\prime} & =\frac{y-3 x^{2}}{3 y^{2}-x}
\end{aligned}
$$

4. (15 points) A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder is sliding away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?
1) Picture:

1A/Math 1A Summer/Exams/MockFDladder.png

2) WTF $\frac{d y}{d t}$ when $x=6$
3) By the Pythagorean theorem: $x^{2}+y^{2}=10^{2}$.
4) Differentiating, we get: $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$
5) However, $x=6, \frac{d x}{d t}=1$. Moreover, if you re-draw the same triangle with $x=6$ plugged in, you should notice that it's an $6-8-10$ triangle, so $y=8$, and hence:

$$
\begin{aligned}
2(6)(1)+2(8) \frac{d y}{d t} & =0 \\
12+16 \frac{d y}{d t} & =0 \\
\frac{d y}{d t} & =-\frac{16}{12} \\
\frac{d y}{d t} & =-\frac{4}{3}
\end{aligned}
$$

6) $\mathrm{So} \frac{d y}{d t}=-\frac{4}{3} \mathrm{ft} / \mathrm{s}$
5. (20 points) If $12 \pi \mathrm{~cm}^{2}$ of material is available to make a cylinder with an open top, find the largest possible volume of the cylinder.
1) Picture: Just draw a picture of a cylinder with an open top. The base radius is r and the height is h.
2) $V=\pi r^{2} h$

However, we know $S=12 \pi$, but $S=\pi r^{2}+2 \pi r h$, so:

$$
\begin{aligned}
\pi r^{2}+2 \pi r h & =12 \pi \\
r^{2}+2 r h & =12 \\
2 r h & =12-r^{2} \\
h & =\frac{12-r^{2}}{2 r} \\
h & =\frac{6}{r}-\frac{r}{2}
\end{aligned}
$$

Hence, $V(r)=\pi r^{2}\left(\frac{6}{r}-\frac{r}{2}\right)=6 \pi r-\frac{\pi}{2} r^{3}$.
So $V(r)=6 \pi r-\frac{\pi}{2} r^{3}$
3) Constraint: $r>0$.
4) $V^{\prime}(r)=6 \pi-\frac{3 \pi}{2} r^{2}$

$$
\begin{aligned}
V^{\prime}(r) & =0 \\
6 \pi-\frac{3 \pi}{2} r^{2} & =0 \\
6 \pi & =\frac{3 \pi}{2} r^{2} \\
6 & =\frac{3}{2} r^{2} \\
r^{2} & =(6) \frac{2}{3} \\
r^{2} & =4 \\
r & =2
\end{aligned}
$$

By FDTAEV, $r=2$ is the maximizer of V, and the largest possible volume is:

$$
V(2)=6 \pi(2)-\frac{\pi}{2}(2)^{3}=12 \pi-4 \pi=8 \pi
$$

6. (15 points) Show that the following equation has exactly one solution in [-1,1]

$$
x^{4}-5 x+1=0
$$

Let $f(x)=x^{4}-5 x+1$
At least one solution: $f(0)=1>0, f(1)=1-5+1=-3<0$, f is continuous, so by the IVT, f has at least one zero in $[-1,1]$

At most one solution: Suppose f has at least two zeros a and b. Then $f(a)=f(b)=0$, so by Rolle's theorem, there is some c in $(-1,1)$ with $f^{\prime}(c)=0$.

But $0=f^{\prime}(c)=4 c^{3}-5$, so $4 c^{3}-5=0$, so $c^{3}=\frac{5}{4}$, so $c=\sqrt[3]{\frac{5}{4}}>1$, which contradict the fact that c is in $(-1,1), \Rightarrow \Leftarrow$. Hence f has at most one zero in $[-1,1]$.

Therefore, f has exactly one zero in $[-1,1]$.
7. (20 points) Use the definition of the integral to find:

$$
\int_{1}^{2} x^{2} d x
$$

You may use the following formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Preliminary work:

- $f(x)=x^{2}$
- $a=1, b=2, \Delta x=\frac{2-1}{n}=\frac{1}{n}$
- $x_{i}=1+\frac{i}{n}$

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(1+\frac{i}{n}\right)^{2} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(1+\frac{2 i}{n}+\frac{i^{2}}{n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}+\frac{2 i}{n^{2}}+\frac{i^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}+\sum_{i=1}^{n} \frac{2 i}{n^{2}}+\sum_{i=1}^{n} \frac{i^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sum_{i=1}^{n} 1\right)+\frac{2}{n^{2}}\left(\sum_{i=1}^{n} i\right)+\frac{1}{n^{3}}\left(\sum_{i=1}^{n} i^{2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}(n)+\frac{2}{n^{2}}\left(\frac{n(n+1)}{2}\right)+\frac{1}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right) \\
& =\lim _{n \rightarrow \infty} 1+\frac{n+1}{n}+\frac{(n+1)(2 n+1)}{6 n^{2}} \\
& =1+1+\frac{2}{6} \\
& =2+\frac{1}{3} \\
& =\frac{7}{3}
\end{aligned}
$$

Check: (not required, but useful)

$$
\int_{1}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}
$$

8. (30 points, 5 points each) Find the following:
(a) The antiderivative F of $f(x)=x^{2}+3 x^{3}-4 x^{7}$ which satisfies $F(0)=1$
The MGAD of f is:

$$
F(x)=\frac{x^{3}}{3}+\frac{3 x^{4}}{4}-\frac{4 x^{8}}{8}+C=\frac{x^{3}}{3}+\frac{3}{4} x^{4}-\frac{1}{2} x^{8}+C
$$

To solve for C, use the fact that $F(0)=1$, so $0+0-0+C=1$, so $C=1$, and hence:

$$
F(x)=\frac{x^{3}}{3}+\frac{3}{4} x^{4}-\frac{1}{2} x^{8}+1
$$

(b) $\int_{-1}^{1}|x| d x$ (Hint: Draw a picture)

If you draw a picture of $f(x)=|x|$, you should notice that the integral is the sum of two triangles, one with base 1 and height 1 (from -1 to 0) and the other one with base 1 and height 1 (from 0 to 1), hence we get:

$$
\int_{-1}^{1}|x| d x=\frac{1}{2}(1)(1)+\frac{1}{2}(1)(1)=\frac{1}{2}+\frac{1}{2}=1
$$

(c)

$$
\int x^{2}+1+\frac{1}{x^{2}+1} d x=\frac{x^{3}}{3}+x+\tan ^{-1}(x)+C
$$

(d) $\int_{1}^{e} \frac{(\ln (x))^{2}}{x} d x$

Let $u=\ln (x)$, then $d u=\frac{1}{x} d x$, and $u(1)=\ln (1)=0$, and $u(e)=\ln (e)=1$, so:

$$
\int_{1}^{e} \frac{(\ln (x))^{2}}{x} d x=\int_{0}^{1} u^{2} d u=\left[\frac{u^{3}}{3}\right]_{0}^{1}=\frac{1}{3}-0=\frac{1}{3}
$$

(e) $g^{\prime}(x)$, where $g(x)=\int_{x}^{e^{x}} \sqrt{1+t^{2}} d t$

Let $f(t)=\sqrt{1+t^{2}}$, then $g(x)=F\left(e^{x}\right)-F(x)$, so:

$$
g^{\prime}(x)=F^{\prime}\left(e^{x}\right) e^{x}-F^{\prime}(x)=f\left(e^{x}\right) e^{x}-f(x)=\sqrt{1+\left(e^{x}\right)^{2}}\left(e^{x}\right)-\sqrt{1+x^{2}}
$$

(f) The average value of $f(x)=\sin (x)$ on $[-\pi, \pi]$

$$
\frac{\int_{-\pi}^{\pi} \sin (x) d x}{\pi-(-\pi)}=\frac{0}{2 \pi}=0
$$

Since $\sin (x)$ is an odd function!
9. (10 points) Find the area of the region enclosed by the curves:

$$
y=x^{2}-4 \quad \text { and } \quad y=4-x^{2}
$$

First draw a picture:

> 1A/Math 1A Summer/Exams/MockFparabola.png

Then determine the points of intersection between the two parabolas:

$$
\begin{aligned}
x^{2}-4 & =4-x^{2} \\
2 x^{2} & =8 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

And notice that on $[-2,2], 4-x^{2}$ is always above $x^{2}-4$, so the area of the region is:

$$
\begin{aligned}
\int_{-2}^{2}\left(4-x^{2}\right)-\left(x^{2}-4\right) d x & =\int_{-2}^{2} 8-2 x^{2} d x \\
& =\left[8 x-\frac{2}{3} x^{3}\right]_{-2}^{2} \\
& =16-\frac{2}{3}(8)-\left(-16+\frac{2}{3}(8)\right) \\
& =16-\frac{16}{3}+16-\frac{16}{3} \\
& =32-\frac{32}{3} \\
& =\frac{64}{3}
\end{aligned}
$$

Of course, if you're clever about this, you might have noticed that the area is $4 \int_{0}^{2} 4-x^{2} d x$, but you didn't have to be so clever about it! :)
10. (10 points) If $f(x)=x \ln (x)$, find:
(a) Intervals of increase and decrease, and local max/min

$$
f^{\prime}(x)=\ln (x)+\frac{x}{x}=\ln (x)+1 .
$$

First of all:

$$
f^{\prime}(x)=0 \Longleftrightarrow \ln (x)+1=0 \Longleftrightarrow \ln (x)=-1 \Longleftrightarrow x=e^{-1}=\frac{1}{e}
$$

Then, drawing a sign table if necessary, we see that:
f is decreasing on $\left(0, \frac{1}{e}\right)$ and increasing on $\left(\frac{1}{e}, \infty\right)$ (careful about the domain of f !)

In particular, f has a local minimum at $\frac{1}{e}$, and $f\left(\frac{1}{e}\right)=\frac{1}{e} \ln \left(\frac{1}{e}\right)=$ $-\frac{1}{e}$
(b) Intervals of concavity and inflection points
$f^{\prime \prime}(x)=\frac{1}{x}$.
In particular, since the domain of f is $(0, \infty), x>0$, so $f^{\prime \prime}(x)>$ 0 , hence f is concave up on $(0, \infty)$. There are no inflection points.

Bonus 1 (5 points) Show that if f is continuous on $[0,1]$, then $\int_{0}^{1} f(x) d x$ is bounded, that is, there are numbers m and M such that:

$$
m \leq \int_{0}^{1} f(x) d x \leq M
$$

Hint: Use one of the 'value' theorems that we haven't used a lot in this course (see section 4.1)

By the extreme value theorem, f attains an absolute $\max M$ and an absolute $\min m$. This means that for all x in $[0,1]$:

$$
m \leq f(x) \leq M
$$

Now integrate:

$$
\begin{aligned}
\int_{0}^{1} m d x & \leq \int_{0}^{1} f(x) d x \leq \int_{0}^{1} M d x \\
m(1-0) & \leq \int_{0}^{1} f(x) d x \leq M(1-0) \\
m & \leq \int_{0}^{1} f(x) d x \leq M
\end{aligned}
$$

Bonus 2 (5 points) If $f(x)=A x^{3}+B x^{2}+C x+D$ is a polynomial such that:

$$
\frac{A}{4}+\frac{B}{3}+\frac{C}{2}+D=0
$$

Show that f has at least one zero on $(0,1)$.
Hint: What is the average value of f on $[0,1]$?

By the MVT for integrals on $[0,1]$, for some c in $(0,1)$, we have:

$$
f(c)=\frac{\int_{0}^{1} f(x) d x}{1-0}
$$

But:

$$
\begin{aligned}
\frac{\int_{0}^{1} f(x) d x}{1-0} & =\int_{0}^{1} f(x) d x \\
& =\int_{0}^{1}\left(A x^{3}+B x^{2}+C x+D\right) d x \\
& =\left[\frac{A}{4} x^{4}+\frac{B}{3} x^{3}+\frac{C}{2} x^{2}+D x\right]_{0}^{1} \\
& =\frac{A}{4}+\frac{B}{3}+\frac{C}{2}+D \\
& =0
\end{aligned}
$$

Hence, for some c in $(0,1)$, we have $f(c)=0$, so f has at least one zero c in $(0,1)$.

Bonus 3 (5 points) Another way to define $\ln (x)$ is:

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Show using this definition only that for all a and b :

$$
\ln (a b)=\ln (a)+\ln (b)
$$

Hint: Fix a constant a, and consider the function:

$$
g(x)=\ln (a x)-\ln (x)-\ln (a)
$$

$$
\begin{aligned}
g(x) & =\ln (a x)-\ln (x)-\ln (a) \\
& =\int_{1}^{a x} \frac{1}{t} d t-\int_{1}^{x} \frac{1}{t} d t-\int_{1}^{a} \frac{1}{t} d t \\
& =F(a x)-F(1)-(F(x)-F(1))-(F(a)-F(1))
\end{aligned}
$$

Where F is an antiderivative of $f(t)=\frac{1}{t}$
Now differentiating g, and using the fact that a is a constant, we get:

$$
\begin{aligned}
g^{\prime}(x) & =F^{\prime}(a x)(a)-0-F^{\prime}(x)+0-0+0 \\
& =f(a x)(a)-f(x) \\
& =\left(\frac{1}{a x}\right)(a)-\frac{1}{x} \\
& =\frac{1}{x}-\frac{1}{x} \\
& =0
\end{aligned}
$$

Hence $g^{\prime}(x)=0$, so $g(x)=C$, where C is a constant.
To figure out what C is, let's calculate $g(1)$:

$$
\begin{aligned}
g(1) & =C \\
\int_{1}^{1} \frac{1}{t} d t & =C \\
0 & =C \\
C & =0
\end{aligned}
$$

Hence $C=0$, and so $g(x)=0$, whence $\ln (a x)-\ln (x)-\ln (a)=$ 0 , so $\ln (a x)=\ln (a)+\ln (x)$.

Since this holds for all x, let $x=b$, and we get:

$$
\ln (a b)=\ln (a)+\ln (b)
$$

BAZINGA!!!

